Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Sci Rep ; 14(1): 5929, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467696

RESUMO

The copper compound CuII(atsm) has progressed to phase 2/3 testing for treatment of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). CuII(atsm) is neuroprotective in mutant SOD1 mouse models of ALS where its activity is ascribed in part to improving availability of essential copper. However, SOD1 mutations cause only ~ 2% of ALS cases and therapeutic relevance of copper availability in sporadic ALS is unresolved. Herein we assessed spinal cord tissue from human cases of sporadic ALS for copper-related changes. We found that when compared to control cases the natural distribution of spinal cord copper was disrupted in sporadic ALS. A standout feature was decreased copper levels in the ventral grey matter, the primary anatomical site of neuronal loss in ALS. Altered expression of genes involved in copper handling indicated disrupted copper availability, and this was evident in decreased copper-dependent ferroxidase activity despite increased abundance of the ferroxidases ceruloplasmin and hephaestin. Mice expressing mutant SOD1 recapitulate salient features of ALS and the unsatiated requirement for copper in these mice is a biochemical target for CuII(atsm). Our results from human spinal cord indicate a therapeutic mechanism of action for CuII(atsm) involving copper availability may also be pertinent to sporadic cases of ALS.


Assuntos
Esclerose Amiotrófica Lateral , Complexos de Coordenação , Doenças Neurodegenerativas , Tiossemicarbazonas , Humanos , Camundongos , Animais , Cobre/metabolismo , Esclerose Amiotrófica Lateral/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Doenças Neurodegenerativas/metabolismo , Camundongos Transgênicos , Medula Espinal/metabolismo , Ceruloplasmina/metabolismo , Modelos Animais de Doenças
2.
Mol Neurodegener ; 19(1): 14, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317225

RESUMO

BACKGROUND: Ferroptosis is a form of regulated cell death characterised by lipid peroxidation as the terminal endpoint and a requirement for iron. Although it protects against cancer and infection, ferroptosis is also implicated in causing neuronal death in degenerative diseases of the central nervous system (CNS). The precise role for ferroptosis in causing neuronal death is yet to be fully resolved. METHODS: To elucidate the role of ferroptosis in neuronal death we utilised co-culture and conditioned medium transfer experiments involving microglia, astrocytes and neurones. We ratified clinical significance of our cell culture findings via assessment of human CNS tissue from cases of the fatal, paralysing neurodegenerative condition of amyotrophic lateral sclerosis (ALS). We utilised the SOD1G37R mouse model of ALS and a CNS-permeant ferroptosis inhibitor to verify pharmacological significance in vivo. RESULTS: We found that sublethal ferroptotic stress selectively affecting microglia triggers an inflammatory cascade that results in non-cell autonomous neuronal death. Central to this cascade is the conversion of astrocytes to a neurotoxic state. We show that spinal cord tissue from human cases of ALS exhibits a signature of ferroptosis that encompasses atomic, molecular and biochemical features. Further, we show the molecular correlation between ferroptosis and neurotoxic astrocytes evident in human ALS-affected spinal cord is recapitulated in the SOD1G37R mouse model where treatment with a CNS-permeant ferroptosis inhibitor, CuII(atsm), ameliorated these markers and was neuroprotective. CONCLUSIONS: By showing that microglia responding to sublethal ferroptotic stress culminates in non-cell autonomous neuronal death, our results implicate microglial ferroptotic stress as a rectifiable cause of neuronal death in neurodegenerative disease. As ferroptosis is currently primarily regarded as an intrinsic cell death phenomenon, these results introduce an entirely new pathophysiological role for ferroptosis in disease.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Camundongos , Animais , Humanos , Microglia/metabolismo , Esclerose Amiotrófica Lateral/metabolismo , Superóxido Dismutase-1/metabolismo , Doenças Neurodegenerativas/metabolismo , Morte Celular , Modelos Animais de Doenças
3.
Metallomics ; 16(1)2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38178638

RESUMO

Demyelination within the central nervous system (CNS) is a significant feature of debilitating neurological diseases such as multiple sclerosis and administering the copper-selective chelatorcuprizone to mice is widely used to model demyelination in vivo. Conspicuous demyelination within the corpus callosum is generally attributed to cuprizone's ability to restrict copper availability in this vulnerable brain region. However, the small number of studies that have assessed copper in brain tissue from cuprizone-treated mice have produced seemingly conflicting outcomes, leaving the role of CNS copper availability in demyelination unresolved. Herein we describe our assessment of copper concentrations in brain samples from mice treated with cuprizone for 40 d. Importantly, we applied an inductively coupled plasma mass spectrometry methodology that enabled assessment of copper partitioned into soluble and insoluble fractions within distinct brain regions, including the corpus callosum. Our results show that cuprizone-induced demyelination in the corpus callosum was associated with decreased soluble copper in this brain region. Insoluble copper in the corpus callosum was unaffected, as were pools of soluble and insoluble copper in other brain regions. Treatment with the blood-brain barrier permeant copper compound CuII(atsm) increased brain copper levels and this was most pronounced in the soluble fraction of the corpus callosum. This effect was associated with significant mitigation of cuprizone-induced demyelination. These results provide support for the involvement of decreased CNS copper availability in demyelination in the cuprizone model. Relevance to human demyelinating disease is discussed.


Assuntos
Cuprizona , Doenças Desmielinizantes , Humanos , Animais , Camundongos , Cuprizona/efeitos adversos , Corpo Caloso , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Cobre/farmacologia , Oligodendroglia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Bainha de Mielina
4.
J Neurochem ; 167(3): 337-346, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37800457

RESUMO

Since the first description of Parkinson's disease (PD) over two centuries ago, the recognition of rare types of atypical parkinsonism has introduced a spectrum of related PD-like diseases. Among these is progressive supranuclear palsy (PSP), a neurodegenerative condition that clinically differentiates through the presence of additional symptoms uncommon in PD. As with PD, the initial symptoms of PSP generally present in the sixth decade of life when the underpinning neurodegeneration is already significantly advanced. The causal trigger of neuronal cell loss in PSP is unknown and treatment options are consequently limited. However, converging lines of evidence from the distinct neurodegenerative conditions of PD and amyotrophic lateral sclerosis (ALS) are beginning to provide insights into potential commonalities in PSP pathology and opportunity for novel therapeutic intervention. These include accumulation of the high abundance cuproenzyme superoxide dismutase 1 (SOD1) in an aberrant copper-deficient state, associated evidence for altered availability of the essential micronutrient copper, and evidence for neuroprotection using compounds that can deliver available copper to the central nervous system. Herein, we discuss the existing evidence for SOD1 pathology and copper imbalance in PSP and speculate that treatments able to provide neuroprotection through manipulation of copper availability could be applicable to the treatment of PSP.


Assuntos
Neuroquímica , Doenças Neurodegenerativas , Doença de Parkinson , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/diagnóstico , Paralisia Supranuclear Progressiva/patologia , Cobre , Doenças Neurodegenerativas/terapia , Superóxido Dismutase-1 , Doença de Parkinson/patologia
6.
Neuroscience ; 509: 125-131, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36436699

RESUMO

CuII(atsm) is a blood-brain barrier permeant copper(II) compound that is under investigation in human clinical trials for the treatment of neurodegenerative diseases of the central nervous system (CNS). Imaging in humans by positron emission tomography shows the compound accumulates in affected regions of the CNS in patients. Most therapeutic studies to date have utilised oral administration of CuII(atsm) in an insoluble form, as either solid tablets or a liquid suspension. However, two pre-clinical studies have demonstrated disease-modifying outcomes following transdermal application of soluble CuII(atsm) prepared in dimethyl sulphoxide. Whether differences in the method of administration lead to different degrees of tissue accumulation of the compound has never been examined. Here, we compare the two methods of administration in wild-type mice by assessing changes in tissue concentrations of copper. Both administration methods resulted in elevated copper concentrations in numerous tissues, with the largest increases evident in the liver, brain and spinal cord. In all instances where treatment with CuII(atsm) resulted in elevated tissue copper, transdermal application of soluble CuII(atsm) led to higher concentrations of copper. In contrast to CuII(atsm), an equivalent dose of copper(II) chloride resulted in minimal changes to tissue copper concentrations, regardless of the administration method. Data presented herein provide quantitative insight to transdermal application of soluble CuII(atsm) as a potential alternative to oral administration of the compound in an insoluble formulation.


Assuntos
Compostos Organometálicos , Tiossemicarbazonas , Camundongos , Humanos , Animais , Compostos Organometálicos/uso terapêutico , Cobre , Tiossemicarbazonas/uso terapêutico , Medula Espinal/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons
7.
Elife ; 112022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472367

RESUMO

Improving muscle function has great potential to improve the quality of life. To identify novel regulators of skeletal muscle metabolism and function, we performed a proteomic analysis of gastrocnemius muscle from 73 genetically distinct inbred mouse strains, and integrated the data with previously acquired genomics and >300 molecular/phenotypic traits via quantitative trait loci mapping and correlation network analysis. These data identified thousands of associations between protein abundance and phenotypes and can be accessed online (https://muscle.coffeeprot.com/) to identify regulators of muscle function. We used this resource to prioritize targets for a functional genomic screen in human bioengineered skeletal muscle. This identified several negative regulators of muscle function including UFC1, an E2 ligase for protein UFMylation. We show UFMylation is up-regulated in a mouse model of amyotrophic lateral sclerosis, a disease that involves muscle atrophy. Furthermore, in vivo knockdown of UFMylation increased contraction force, implicating its role as a negative regulator of skeletal muscle function.


Assuntos
Proteoma , Proteômica , Camundongos , Animais , Humanos , Proteoma/metabolismo , Qualidade de Vida , Músculo Esquelético/metabolismo , Fenótipo
8.
Brain ; 145(9): 3108-3130, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35512359

RESUMO

Aberrant self-assembly and toxicity of wild-type and mutant superoxide dismutase 1 (SOD1) has been widely examined in silico, in vitro and in transgenic animal models of amyotrophic lateral sclerosis. Detailed examination of the protein in disease-affected tissues from amyotrophic lateral sclerosis patients, however, remains scarce. We used histological, biochemical and analytical techniques to profile alterations to SOD1 protein deposition, subcellular localization, maturation and post-translational modification in post-mortem spinal cord tissues from amyotrophic lateral sclerosis cases and controls. Tissues were dissected into ventral and dorsal spinal cord grey matter to assess the specificity of alterations within regions of motor neuron degeneration. We provide evidence of the mislocalization and accumulation of structurally disordered, immature SOD1 protein conformers in spinal cord motor neurons of SOD1-linked and non-SOD1-linked familial amyotrophic lateral sclerosis cases, and sporadic amyotrophic lateral sclerosis cases, compared with control motor neurons. These changes were collectively associated with instability and mismetallation of enzymatically active SOD1 dimers, as well as alterations to SOD1 post-translational modifications and molecular chaperones governing SOD1 maturation. Atypical changes to SOD1 protein were largely restricted to regions of neurodegeneration in amyotrophic lateral sclerosis cases, and clearly differentiated all forms of amyotrophic lateral sclerosis from controls. Substantial heterogeneity in the presence of these changes was also observed between amyotrophic lateral sclerosis cases. Our data demonstrate that varying forms of SOD1 proteinopathy are a common feature of all forms of amyotrophic lateral sclerosis, and support the presence of one or more convergent biochemical pathways leading to SOD1 proteinopathy in amyotrophic lateral sclerosis. Most of these alterations are specific to regions of neurodegeneration, and may therefore constitute valid targets for therapeutic development.


Assuntos
Esclerose Amiotrófica Lateral , Processamento de Proteína Pós-Traducional , Superóxido Dismutase-1 , Esclerose Amiotrófica Lateral/genética , Humanos , Mutação , Medula Espinal/patologia , Superóxido Dismutase-1/genética
9.
J Cachexia Sarcopenia Muscle ; 13(3): 1541-1553, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35249268

RESUMO

BACKGROUND: Oxidative stress is implicated in the pathophysiology of Duchenne muscular dystrophy (DMD, caused by mutations in the dystrophin gene), which is the most common and severe of the muscular dystrophies. To our knowledge, the distribution of iron, an important modulator of oxidative stress, has not been assessed in DMD. We tested the hypotheses that iron accumulation occurs in mouse models of DMD and that modulation of iron through the diet or chelation could modify disease severity. METHODS: We assessed iron distribution and total elemental iron using LA-ICP-MS on skeletal muscle cross-sections of 8-week-old Bl10 control mice and dystrophic mdx mice (with moderate dystrophy) and dystrophin/utrophin-null mice (dko, with severe dystrophy). In addition, mdx mice (4 weeks) were treated with either an iron chelator (deferiprone 150 mg/kg/day) or iron-enriched feed (containing 1% added iron as carbonyl iron). Immunoblotting was used to determine the abundance of iron- and mitochondria-related proteins. (Immuno)histochemical and mRNA assessments of fibrosis and inflammation were also performed. RESULTS: We observed a significant increase in total elemental iron in hindlimb muscles of dko mice (+50%, P < 0.05) and in the diaphragm of mdx mice (+80%, P < 0.05), with both tissues exhibiting severe pathology. Iron dyshomeostasis was further evidenced by an increase in the storage protein ferritin (dko: +39%, P < 0.05) and ferroportin compared with Bl10 control mice (mdx: +152% and dko: +175%, P < 0.05). Despite having features of iron overload, dystrophic muscles had lower protein expression of ALAS-1, the rate-limiting enzyme for haem synthesis (dko -44%, P < 0.05), and the haem-containing protein myoglobin (dko -54%, P < 0.05). Deferiprone treatment tended to decrease muscle iron levels in mdx mice (-30%, P < 0.1), which was associated with lower oxidative stress and fibrosis, but suppressed haem-containing proteins and mitochondrial content. Increasing iron via dietary intervention elevated total muscle iron (+25%, P < 0.05) but did not aggravate the pathology. CONCLUSIONS: Muscles from dystrophic mice have increased iron levels and dysregulated iron-related proteins that are associated with dystrophic pathology. Muscle iron levels were manipulated by iron chelation and iron enriched feed. Iron chelation reduced fibrosis and reactive oxygen species (ROS) but also suppressed haem-containing proteins and mitochondrial activity. Conversely, iron supplementation increased ferritin and haem-containing proteins but did not alter ROS, fibrosis, or mitochondrial activity. Further studies are required to investigate the contribution of impaired ferritin breakdown in the dysregulation of iron homeostasis in DMD.


Assuntos
Sobrecarga de Ferro , Distrofia Muscular de Duchenne , Animais , Deferiprona , Distrofina/genética , Ferritinas , Fibrose , Heme/metabolismo , Ferro/metabolismo , Quelantes de Ferro , Sobrecarga de Ferro/etiologia , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética , Espécies Reativas de Oxigênio/metabolismo
10.
Fluids Barriers CNS ; 18(1): 57, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876168

RESUMO

BACKGROUND: Little is known about the extent of drug entry into developing brain, when administered to pregnant and lactating women. Lithium is commonly prescribed for bipolar disorder. Here we studied transfer of lithium given to dams, into blood, brain and cerebrospinal fluid (CSF) in embryonic and postnatal animals as well as adults. METHODS: Lithium chloride in a clinically relevant dose (3.2 mg/kg body weight) was injected intraperitoneally into pregnant (E15-18) and lactating dams (birth-P16/17) or directly into postnatal pups (P0-P16/17). Acute treatment involved a single injection; long-term treatment involved twice daily injections for the duration of the experiment. Following terminal anaesthesia blood plasma, CSF and brains were collected. Lithium levels and brain distribution were measured using Laser Ablation Inductively Coupled Plasma-Mass Spectrometry and total lithium levels were confirmed by Inductively Coupled Plasma-Mass Spectrometry. RESULTS: Lithium was detected in blood, CSF and brain of all fetal and postnatal pups following lithium treatment of dams. Its concentration in pups' blood was consistently below that in maternal blood (30-35%) indicating significant protection by the placenta and breast tissue. However, much of the lithium that reached the fetus entered its brain. Levels of lithium in plasma fluctuated in different treatment groups but its concentration in CSF was stable at all ages, in agreement with known stable levels of endogenous ions in CSF. There was no significant increase of lithium transfer into CSF following application of Na+/K+ ATPase inhibitor (digoxin) in vivo, indicating that lithium transfer across choroid plexus epithelium is not likely to be via the Na+/K+ ATPase mechanism, at least early in development. Comparison with passive permeability markers suggested that in acute experiments lithium permeability was less than expected for diffusion but similar in long-term experiments at P2. CONCLUSIONS: Information obtained on the distribution of lithium in developing brain provides a basis for studying possible deleterious effects on brain development and behaviour in offspring of mothers undergoing lithium therapy.


Assuntos
Antimaníacos/farmacocinética , Sangue , Encéfalo , Líquido Cefalorraquidiano , Cloreto de Lítio/farmacocinética , Troca Materno-Fetal , Leite Humano , Animais , Animais Recém-Nascidos , Animais Lactentes , Antimaníacos/administração & dosagem , Antimaníacos/sangue , Antimaníacos/líquido cefalorraquidiano , Plexo Corióideo , Embrião de Mamíferos , Feminino , Lactação , Cloreto de Lítio/administração & dosagem , Cloreto de Lítio/sangue , Cloreto de Lítio/líquido cefalorraquidiano , Gravidez , Ratos , Ratos Sprague-Dawley
11.
Sci Rep ; 11(1): 19392, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588483

RESUMO

The synthetic copper-containing compound, CuATSM, has emerged as one of the most promising drug candidates developed for the treatment of amyotrophic lateral sclerosis (ALS). Multiple studies have reported CuATSM treatment provides therapeutic efficacy in various mouse models of ALS without any observable adverse effects. Moreover, recent results from an open label clinical study suggested that daily oral dosing with CuATSM slows disease progression in patients with both sporadic and familial ALS, providing encouraging support for CuATSM in the treatment of ALS. Here, we assessed CuATSM in high copy SOD1G93A mice on the congenic C57BL/6 background, treating at 100 mg/kg/day by gavage, starting at 70 days of age. This dose in this specific model has not been assessed previously. Unexpectedly, we report a subset of mice initially administered CuATSM exhibited signs of clinical toxicity, that necessitated euthanasia in extremis after 3-51 days of treatment. Following a 1-week washout period, the remaining mice resumed treatment at the reduced dose of 60 mg/kg/day. At this revised dose, treatment with CuATSM slowed disease progression and increased survival relative to vehicle-treated littermates. This work provides the first evidence that CuATSM produces positive disease-modifying outcomes in high copy SOD1G93A mice on a congenic C57BL/6 background. Furthermore, results from the 100 mg/kg/day phase of the study support dose escalation determination of tolerability as a prudent step when assessing treatments in previously unassessed models or genetic backgrounds.


Assuntos
Esclerose Amiotrófica Lateral/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Compostos de Cobre Orgânico , Superóxido Dismutase-1/metabolismo , Animais , Progressão da Doença , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Compostos de Cobre Orgânico/administração & dosagem , Compostos de Cobre Orgânico/efeitos adversos , Compostos de Cobre Orgânico/farmacologia
12.
Chem Sci ; 12(30): 10321-10333, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34476052

RESUMO

Tumours are abnormal growths of cells that reproduce by redirecting essential nutrients and resources from surrounding tissue. Changes to cell metabolism that trigger the growth of tumours are reflected in subtle differences between the chemical composition of healthy and malignant cells. We used LA-ICP-MS imaging to investigate whether these chemical differences can be used to spatially identify tumours and support detection of primary colorectal tumours in anatomical pathology. First, we generated quantitative LA-ICP-MS images of three colorectal surgical resections with case-matched normal intestinal wall tissue and used this data in a Monte Carlo optimisation experiment to develop an algorithm that can classify pixels as tumour positive or negative. Blinded testing and interrogation of LA-ICP-MS images with micrographs of haematoxylin and eosin stained and Ki67 immunolabelled sections revealed Monte Carlo optimisation accurately identified primary tumour cells, as well as returning false positive pixels in areas of high cell proliferation. We analysed an additional 11 surgical resections of primary colorectal tumours and re-developed our image processing method to include a random forest regression machine learning model to correctly identify heterogenous tumours and exclude false positive pixels in images of non-malignant tissue. Our final model used over 1.6 billion calculations to correctly discern healthy cells from various types and stages of invasive colorectal tumours. The imaging mass spectrometry and data analysis methods described, developed in partnership with clinical cancer researchers, have the potential to further support cancer detection as part of a comprehensive digital pathology approach to cancer care through validation of a new chemical biomarker of tumour cells.

13.
Cell Mol Life Sci ; 78(19-20): 6605-6630, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34476545

RESUMO

Motor neurone disease (MND) is a neurodegenerative disorder characterised by progressive destruction of motor neurons, muscle paralysis and death. The amyloid precursor protein (APP) is highly expressed in the central nervous system and has been shown to modulate disease outcomes in MND. APP is part of a gene family that includes the amyloid precursor-like protein 1 (APLP1) and 2 (APLP2) genes. In the present study, we investigated the role of APLP2 in MND through the examination of human spinal cord tissue and by crossing APLP2 knockout mice with the superoxide dismutase 1 (SOD1-G37R) transgenic mouse model of MND. We found the expression of APLP2 is elevated in the spinal cord from human cases of MND and that this feature of the human disease is reproduced in SOD1-G37R mice at the End-stage of their MND-like phenotype progression. APLP2 deletion in SOD1-G37R mice significantly delayed disease progression and increased the survival of female SOD1-G37R mice. Molecular and biochemical analysis showed female SOD1-G37R:APLP2-/- mice displayed improved innervation of the neuromuscular junction, ameliorated atrophy of muscle fibres with increased APP protein expression levels in the gastrocnemius muscle. These results indicate a sex-dependent role for APLP2 in mutant SOD1-mediated MND and further support the APP family as a potential target for further investigation into the cause and regulation of MND.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Doença dos Neurônios Motores/metabolismo , Superóxido Dismutase-1/metabolismo , Esclerose Amiotrófica Lateral/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios Motores/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Junção Neuromuscular/metabolismo , Fenótipo , Medula Espinal/metabolismo
14.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445419

RESUMO

Dysregulation of brain iron metabolism is one of the pathological features of aging and Alzheimer's disease (AD), a neurodegenerative disease characterized by progressive memory loss and cognitive impairment. While physical inactivity is one of the risk factors for AD and regular exercise improves cognitive function and reduces pathology associated with AD, the underlying mechanisms remain unclear. The purpose of the study is to explore the effect of regular physical exercise on modulation of iron homeostasis in the brain and periphery of the 5xFAD mouse model of AD. By using inductively coupled plasma mass spectrometry and a variety of biochemical techniques, we measured total iron content and level of proteins essential in iron homeostasis in the brain and skeletal muscles of sedentary and exercised mice. Long-term voluntary running induced redistribution of iron resulted in altered iron metabolism and trafficking in the brain and increased iron content in skeletal muscle. Exercise reduced levels of cortical hepcidin, a key regulator of iron homeostasis, coupled with interleukin-6 (IL-6) decrease in cortex and plasma. We propose that regular exercise induces a reduction of hepcidin in the brain, possibly via the IL-6/STAT3/JAK1 pathway. These findings indicate that regular exercise modulates iron homeostasis in both wild-type and AD mice.


Assuntos
Doença de Alzheimer/reabilitação , Encéfalo/metabolismo , Ferro/metabolismo , Músculo Esquelético/metabolismo , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Exercício Físico , Regulação da Expressão Gênica , Hepcidinas/metabolismo , Homeostase , Humanos , Interleucina-6/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Comportamento Sedentário
15.
Anal Biochem ; 630: 114326, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34358515

RESUMO

Metallothioneins (MTs) are crucial for metal ion homeostasis in mammalian cells. Specialized mass spectrometry methods have been developed to detect MTs in tissue extracts, though facile methods with scalable throughput are lacking. To improve analytical throughput and repeatability, we developed a standardised liquid chromatography tandem mass spectrometry (LC-MS/MS) method for robust determination of metallothionein-3 (MT3) that is amenable to microplate processing. This method uses standard protein digestion conditions with commercially available reagents and commonly practiced reversed-phase chromatography, detecting MT3 at low ng/mL levels in human brain tissue extracts. We found that trypsin digestion largely underestimated MT3 levels, whereas endopeptidase Lys-C yielded vastly higher signals with low replicate variance. The choice of target peptide was critical for accurate MT3 detection - a peptide in the α-domain yielded the most robust signals. We demonstrate the utility of this method by comparing the expression of MT3 in post-mortem brain tissues of a cohort of Alzheimer's disease (AD) individuals and age-matched controls.


Assuntos
Encéfalo/patologia , Metalotioneína 3/análise , Idoso , Cromatografia Líquida , Estudos de Coortes , Feminino , Humanos , Masculino , Espectrometria de Massas em Tandem
16.
Br J Haematol ; 194(1): 200-210, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33942901

RESUMO

Beta-thalassaemia is an inherited blood disorder characterised by ineffective erythropoiesis and anaemia. Consequently, hepcidin expression is reduced resulting in increased iron absorption and primary iron overload. Hepcidin is under the negative control of transmembrane serine protease 6 (TMPRSS6) via cleavage of haemojuvelin (HJV), a co-receptor for the bone morphogenetic protein (BMP)-mothers against decapentaplegic homologue (SMAD) signalling pathway. Considering the central role of the TMPRSS6/HJV/hepcidin axis in iron homeostasis, the inhibition of TMPRSS6 expression represents a promising therapeutic strategy to increase hepcidin production and ameliorate anaemia and iron overload in ß-thalassaemia. In the present study, we investigated a small interfering RNA (siRNA) conjugate optimised for hepatic targeting of Tmprss6 (SLN124) in ß-thalassaemia mice (Hbbth3/+ ). Two subcutaneous injections of SLN124 (3 mg/kg) were sufficient to normalise hepcidin expression and reduce anaemia. We also observed a significant improvement in erythroid maturation, which was associated with a significant reduction in splenomegaly. Treatment with the iron chelator, deferiprone (DFP), did not impact any of the erythroid parameters. However, the combination of SLN124 with DFP was more effective in reducing hepatic iron overload than either treatment alone. Collectively, we show that the combination therapy can ameliorate several disease symptoms associated with chronic anaemia and iron overload, and therefore represents a promising pharmacological modality for the treatment of ß-thalassaemia and related disorders.


Assuntos
Deferiprona/uso terapêutico , Eritropoese/efeitos dos fármacos , Hepcidinas/biossíntese , Quelantes de Ferro/uso terapêutico , Sobrecarga de Ferro/prevenção & controle , Proteínas de Membrana/antagonistas & inibidores , RNA Interferente Pequeno/uso terapêutico , Talassemia beta/tratamento farmacológico , Acetilgalactosamina/administração & dosagem , Animais , Deferiprona/administração & dosagem , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Perfilação da Expressão Gênica , Hepcidinas/genética , Humanos , Ferro/sangue , Quelantes de Ferro/administração & dosagem , Sobrecarga de Ferro/etiologia , Fígado/metabolismo , Magnésio/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Espécies Reativas de Oxigênio , Serina Endopeptidases/genética , Baço/metabolismo , Baço/ultraestrutura , Zinco/metabolismo , Talassemia beta/complicações , Talassemia beta/metabolismo , Talassemia beta/fisiopatologia
17.
J Cachexia Sarcopenia Muscle ; 12(2): 476-492, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33665974

RESUMO

BACKGROUND: Oxidative stress is implicated in the insidious loss of muscle mass and strength that occurs with age. However, few studies have investigated the role of iron, which is elevated during ageing, in age-related muscle wasting and blunted repair after injury. We hypothesized that iron accumulation leads to membrane lipid peroxidation, muscle wasting, increased susceptibility to injury, and impaired muscle regeneration. METHODS: To examine the role of iron in age-related muscle atrophy, we compared the skeletal muscles of 3-month-old with 22- to 24-month-old 129SvEv FVBM mice. We assessed iron distribution and total elemental iron using laser ablation inductively coupled plasma mass spectrometry and Perls' stain on skeletal muscle cross-sections. In addition, old mice underwent ischaemia-reperfusion (IR) injury (90 min ischaemia), and muscle regeneration was assessed 14 days after injury. Immunoblotting was used to determine lipid peroxidation (4HNE) and iron-related proteins. To determine whether muscle iron content can be altered, old mice were treated with deferiprone (DFP) in the drinking water, and we assessed its effects on muscle regeneration after injury. RESULTS: We observed a significant increase in total elemental iron (+43%, P < 0.05) and lipid peroxidation (4HNE: +76%, P < 0.05) in tibialis anterior muscles of old mice. Iron was further increased after injury (adult: +81%, old: +135%, P < 0.05) and associated with increased lipid peroxidation (+41%, P < 0.05). Administration of DFP did not impact iron or measures of lipid peroxidation in skeletal muscle or modulate muscle mass. Increased muscle iron concentration and lipid peroxidation were associated with less efficient regeneration, evident from the smaller fibres in cross-sections of tibialis anterior muscles (-24%, P < 0.05) and an increased percentage of fibres with centralized nuclei (+4124%, P < 0.05) in muscles of old compared with adult mice. Administration of DFP lowered iron after IR injury (PRE: -32%, P < 0.05 and POST: -41%, P < 0.05), but did not translate to structural improvements. CONCLUSIONS: Muscles from old mice have increased iron levels, which are associated with increased lipid peroxidation, increased susceptibility to IR injury, and impaired muscle regeneration. Our results suggest that iron is involved in effective muscle regeneration, highlighting the importance of iron homeostasis in muscle atrophy and muscle repair.


Assuntos
Músculo Esquelético , Traumatismo por Reperfusão , Animais , Ferro , Isquemia , Camundongos , Regeneração
18.
Angew Chem Int Ed Engl ; 60(17): 9215-9246, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-32144830

RESUMO

Cu/Zn superoxide dismutase (SOD1) is a frontline antioxidant enzyme catalysing superoxide breakdown and is important for most forms of eukaryotic life. The evolution of aerobic respiration by mitochondria increased cellular production of superoxide, resulting in an increased reliance upon SOD1. Consistent with the importance of SOD1 for cellular health, many human diseases of the central nervous system involve perturbations in SOD1 biology. But far from providing a simple demonstration of how disease arises from SOD1 loss-of-function, attempts to elucidate pathways by which atypical SOD1 biology leads to neurodegeneration have revealed unexpectedly complex molecular characteristics delineating healthy, functional SOD1 protein from that which likely contributes to central nervous system disease. This review summarises current understanding of SOD1 biology from SOD1 genetics through to protein function and stability.


Assuntos
Antioxidantes/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Superóxido Dismutase-1/metabolismo , Biocatálise , Estabilidade Enzimática , Humanos , Superóxido Dismutase-1/deficiência , Superóxido Dismutase-1/genética , Superóxidos/metabolismo
19.
Sleep ; 44(4)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33175142

RESUMO

STUDY OBJECTIVES: Evaluate serum and brain noniron metals in the pathology and genetics of restless legs syndrome (RLS). METHODS: In two independent studies (cohorts 1 and 2), in which subjects either remained on medications or tapered off medications, we analyzed serum levels of iron, calcium, magnesium, manganese, copper, and zinc both in RLS patients and controls, and assessed the prevalence of the MEIS1 and BTBD9 risk alleles previously established through genome-wide association studies. Human brain sections and a nematode genetic model were also quantified for metal levels using mass spectrometry. RESULTS: We found a significant enrichment for the BTBD9 risk genotype in the RLS affected group compared to control (p = 0.0252), consistent with previous literature. Serum (p = 0.0458 and p = 0.0139 for study cohorts 1 and 2, respectively) and brain (p = 0.0413) zinc levels were significantly elevated in the RLS patients versus control subjects. CONCLUSION: We show for the first time that serum and brain levels of zinc are elevated in RLS. Further, we confirm the BTBD9 genetic risk factor in a new population, although the zinc changes were not significantly associated with risk genotypes. Zinc and iron homeostasis are interrelated, and zinc biology impacts neurotransmitter systems previously linked to RLS. Given the modest albeit statistically significant increase in serum zinc of ~20%, and the lack of association with two known genetic risk factors, zinc may not represent a primary etiology for the syndrome. Further investigation into the pathogenetic role that zinc may play in restless legs syndrome is needed.


Assuntos
Síndrome das Pernas Inquietas , Alelos , Estudo de Associação Genômica Ampla , Humanos , Proteína Meis1/genética , Síndrome das Pernas Inquietas/genética , Zinco
20.
Life (Basel) ; 10(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158182

RESUMO

The blood-brain barrier permeant, copper-containing compound, CuII(atsm), has successfully progressed from fundamental research outcomes in the laboratory through to phase 2/3 clinical assessment in patients with the highly aggressive and fatal neurodegenerative condition of amyotrophic lateral sclerosis (ALS). The most compelling outcomes to date to indicate potential for disease-modification have come from pre-clinical studies utilising mouse models that involve transgenic expression of mutated superoxide dismutase 1 (SOD1). Mutant SOD1 mice provide a very robust mammalian model of ALS with high validity, but mutations in SOD1 account for only a small percentage of ALS cases in the clinic, with the preponderant amount of cases being sporadic and of unknown aetiology. As per other putative drugs for ALS developed and tested primarily in mutant SOD1 mice, this raises important questions about the pertinence of CuII(atsm) to broader clinical translation. This review highlights some of the challenges associated with the clinical translation of new treatment options for ALS. It then provides a brief account of pre-clinical outcomes for CuII(atsm) in SOD1 mouse models of ALS, followed by an outline of additional studies which report positive outcomes for CuII(atsm) when assessed in cell and mouse models of neurodegeneration which do not involve mutant SOD1. Clinical evidence for CuII(atsm) selectively targeting affected regions of the CNS in patients is also presented. Overall, this review summarises the existing evidence which indicates why clinical relevance of CuII(atsm) likely extends beyond the context of cases of ALS caused by mutant SOD1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...